AP Calculus

Area & Volume

Name

Day Day 6 App of Int Pd.

Find the area of the given region.

$$\int_{0}^{8} \frac{x}{4} dx = 8$$

2.
$$\mathcal{R}_2$$

$$\int_{3}^{8} \sqrt{x} - \frac{x}{4} dx = 4$$

$$\int_{0}^{8} 2 - 3\sqrt{x} \, dx = 4$$

Find the volume generated by rotating the given region about the given line

4.
$$\mathcal{R}_1$$
 about OA

$$TT \int_{0}^{8} \left(\frac{x}{4}\right)^{2} dx = \frac{32\pi}{3}$$

5.
$$\mathcal{R}_1$$
 about AB

$$TT \int_{0}^{8} \left(\frac{x}{4}\right)^{2} dx = \frac{32\pi}{3} T\int_{0}^{2} (8-4y)^{2} dy = \frac{128\pi}{3} T\int_{0}^{2} 8^{2} - (4y)^{2} dy$$

6.
$$\mathcal{R}_1$$
 about OC

$$\pi \int_{0}^{2} 8^{2} - (4y)^{2} dy$$
= $\frac{256\pi}{3}$

7.
$$\mathcal{R}_2$$
 about OA

$$TT \int_{0}^{8} (3/x)^{2} - (\frac{x}{4})^{2} dx$$

$$= 128T$$

8.
$$\mathcal{R}_2$$
 about \mathcal{OC}

$$\pi \int (4y)^2 - (y^3)^2 dy$$
= 512π

9.
$$\mathcal{R}_2$$
 about line $y = -5$

$$\frac{8}{11 \int (5+3x)^{2}-(5+\frac{x}{4})^{2} dx}$$

$$= \frac{728\pi}{15}$$

10.
$$\mathcal{R}_3$$
 about AB

$$TT \int_{0}^{2} 8^{2} - (8 - y^{3})^{2} dy$$

$$= 320TT$$

11.
$$\mathcal{R}_3$$
 about BC

$$\pi \int_{0}^{8} (2-3\sqrt{x})^{2} dx$$
= 16π
5

12.
$$\mathcal{R}_3$$
 about \mathcal{OC}

$$\pi \int_{0}^{2} (y^{3})^{2} dy = \frac{128\pi}{7}$$

Let \mathcal{R} be the region bounded by the curves $y = \frac{1}{\sqrt{x}}$, y = 1, and x = 4.

a.) Find the area of \mathcal{R} .

$$\int_{1}^{4} \left(1 - \frac{1}{\sqrt{x}}\right) dx = 1$$

b.) Suppose the line x=k divides $\mathcal R$ into two regions of equal area. Find the value of k.

$$\int_{1}^{1} (1 - \frac{1}{\sqrt{x}}) dx = \frac{1}{2}(1)$$

c.) Find the volume of the solid generated by revolving $\mathcal R$ about the y-axis.

$$\pi \int_{1/2}^{1/2} 4^2 - \left(\frac{1}{y^2}\right)^2 dy = \frac{17\pi}{3}$$

d.) Find the volume of the solid generated by revolving \mathcal{R} about the line y=2.

e.) Find the volume of the solid whose base is the region \mathcal{R} and whose cross sections cut by perpendicular planes to th x-axis are equilateral triangles.